Mst1 and Mst2 Are Essential Regulators of Trophoblast Differentiation and Placenta Morphogenesis
نویسندگان
چکیده
The placenta is essential for survival and growth of the fetus because it promotes the delivery of nutrients and oxygen from the maternal circulation as well as fetal waste disposal. Mst1 and Mst2 (Mst1/2), key components of the mammalian hpo/Mst signaling pathway, encode two highly conserved Ser/Thr kinases and play important roles in the prevention of tumorigenesis and autoimmunity, control of T cell development and trafficking, and embryonic development. However, their functions in placental development are not fully understood, and the underlying cellular and molecular mechanisms remain elusive. Here, we investigated the functions of Mst1/2 in mouse placental development using both conventional and conditional (endothelial) Mst1/2 double knockout mice. We found that the number of trophoblast giant cells dramatically increased while spongiotrophoblast cells almost completely disappeared in Mst1/2 deficient placentas. We showed that Mst1/2 deficiency down regulated the expression of Mash2, which is required for suppressing the differentiation of trophoblast giant cells. Furthermore, we demonstrated that endothelial-specific deletion of Mst1/2 led to impaired placental labyrinthine vasculature and embryonic lethality at E11.5, but neither affected vasculature in yolk sac and embryo proper nor endocardium development. Collectively, our findings suggest that Mst1/2 regulate placental development by control of trophoblast cell differentiation and labyrinthine vasculature at midgestation and Mst1/2 control labyrinth morphogenesis in trophoblast- and fetal endothelial-dependent manners. Thus, our studies have defined novel roles of Mst1/2 in mouse placental development.
منابع مشابه
Functional Role of Mst1/Mst2 in Embryonic Stem Cell Differentiation
The Hippo pathway is an evolutionary conserved pathway that involves cell proliferation, differentiation, apoptosis and organ size regulation. Mst1 and Mst2 are central components of this pathway that are essential for embryonic development, though their role in controlling embryonic stem cells (ES cells) has yet to be exploited. To further understand the Mst1/Mst2 function in ES cell pluripote...
متن کاملA Positive Feedback Loop Involving Gcm1 and Fzd5 Directs Chorionic Branching Morphogenesis in the Placenta
Chorioallantoic branching morphogenesis is a key milestone during placental development, creating the large surface area for nutrient and gas exchange, and is therefore critical for the success of term pregnancy. Several Wnt pathway molecules have been shown to regulate placental development. However, it remains largely unknown how Wnt-Frizzled (Fzd) signaling spatiotemporally interacts with ot...
متن کاملHippo signaling components, Mst1 and Mst2, act as a switch between self-renewal and differentiation in Xenopus hematopoietic and endothelial progenitors.
Hippo signaling is a conserved pathway that regulates cell proliferation and organ size control. Mst1 and Mst2 were identified as homologs of hippo and as core kinases of the Hippo pathway in mammals. Here, we have characterized the role of Mst1 and Mst2 during Xenopus primitive hematopoiesis. We showed that Mst1 and Mst2 were strongly expressed in the Xenopus ventral blood island, where primit...
متن کاملH-ras Inhibits the Hippo Pathway by Promoting Mst1/Mst2 Heterodimerization
The protein kinases Mst1 and Mst2 have tumor suppressor activity, but their mode of regulation is not well established. Mst1 and Mst2 are broadly expressed and may have certain overlapping functions in mammals, as deletions of both Mst1 and Mst2 together are required for tumorigenesis in mouse models [1-3]. These kinases act via a three-component signaling cascade comprising Mst1 and Mst2, the ...
متن کاملMOBKL1A/MOBKL1B Phosphorylation by MST1 and MST2 Inhibits Cell Proliferation
BACKGROUND MST1 and MST2 are the mammalian Ste20-related protein kinases most closely related to Drosophila Hippo, a major regulator of cell proliferation and survival during development. Overexpression of MST1 or MST2 in mammalian cells is proapototic; however, little is known concerning the physiologic regulation of the endogenous MST1/MST2 kinases, their role in mammalian cell proliferation,...
متن کامل